
Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes

Saqib Javed†1 Ahmad Jarrar Khan†1 Corentin Dumery1 Chen Zhao1 Mathieu Salzmann1,3

1EPFL 3Swiss Data Science Center
firstname.lastname@epfl.ch

Dynamic 3DGS TC3DGS (Ours)Ground Truth

 47 x Compression

582 FPS 2161 MB 750 FPS 46 MB

28.2
PSNR

27.9
PSNR

1935 MB 912 FPS 32 MB

 67 x Compression

760 FPS

29.5
PSNR

29.2
PSNR

Figure 1. Our method, TC3DGS, achieves up to 67× compression with minimal loss in image quality, while demonstrating significantly
higher rendering speed compared to [26].

Abstract

Recent advancements in high-fidelity dynamic scene re-
construction have leveraged dynamic 3D Gaussians and
4D Gaussian Splatting for realistic scene representation.
However, to make these methods viable for real-time ap-
plications such as AR/VR, gaming, and rendering on low-
power devices, substantial reductions in memory usage and
improvements in rendering efficiency are required. While
many state-of-the-art methods prioritize lightweight imple-
mentations, they struggle in handling scenes with complex
motions or long sequences. In this work, we introduce
Temporally Compressed 3D Gaussian Splatting (TC3DGS),
a novel technique designed specifically to effectively com-
press dynamic 3D Gaussian representations. TC3DGS se-
lectively prunes Gaussians based on their temporal rele-
vance and employs gradient-aware mixed-precision quan-
tization to dynamically compress Gaussian parameters. It
additionally relies on a variation of the Ramer-Douglas-
Peucker algorithm in a post-processing step to further re-

†Equal Contribution.

duce storage by interpolating Gaussian trajectories across
frames. Our experiments across multiple datasets demon-
strate that TC3DGS achieves up to 67× compression with
minimal or no degradation in visual quality.

1. Introduction

Dynamic scene reconstruction is essential for applications
in virtual and augmented reality, gaming and robotics,
where a real-time and accurate representation of moving
objects and their environment is key to immersive expe-
riences. Recent advancements such as Neural Radiance
Fields (NeRF) [28] have enabled high-fidelity scene genera-
tion, albeit at the cost of slow rendering speeds. To address
this limitation, 3D Gaussian Splatting (3DGS) [20] lever-
ages sparse Gaussian splats for efficient scene rendering,
particularly for static scenes.

Since the advent of 3DGS, a plethora of extensions to
dynamic scenes have been proposed [6, 8, 26, 39–41]. In
this context, some methods [6, 26, 39, 40] allow the Gaus-
sians to evolve over time, capturing time-varying proper-

1

ar
X

iv
:2

41
2.

05
70

0v
1

 [
cs

.C
V

]
 7

 D
ec

 2
02

4

ties such as position, opacity, and covariance. In contrast,
other methods learn spatio-temporal Gaussians to represent
the dynamic content directly, which allows for a more flex-
ible modeling of scene variations [6, 8, 40, 41]. However,
obtaining a high-quality representation with these methods
often requires a large number of Gaussians, leading to sub-
stantial storage overhead. Furthermore, as shown in Fig-
ure 2, spatio-temporal methods face the challenge of ef-
fectively adjusting the Gaussian parameters when applied
to dynamic scenes with rapid and complex motions, such
as those in [18]. This is alleviated by Dynamic 3D Gaus-
sians [26], which enforces consistency across all frames, but
at the cost of increased storage and rendering time.

To address these challenges, we propose Temporally
Compressed 3D Gaussian Splatting (TC3DGS), a novel
approach designed to efficiently compress dynamic 3D
Gaussian representations for high-quality, real-time scene
rendering. Unlike traditional methods, TC3DGS reduces
both the number and the memory footprint of the Gaussians,
by selectively pruning splats based on temporal importance
and learning a parameter-specific bit-precision. This selec-
tive compression allows us to maintain scene fidelity while
significantly reducing storage and computational require-
ments, making TC3DGS well-suited for dynamic environ-
ments with complex motions.

Our approach begins with a pruning and masking strat-
egy designed to eliminate redundant Gaussians. While pre-
vious works [11, 21, 42] have proposed pruning methods
for 3DGS, they do not attempt to model dynamic scenes and
thus take no advantage of temporal compression. Unfortu-
nately, adapting these pruning strategies to dynamic scenes
is not straightforward, as different Gaussians may need to
be pruned across different frames. Here, we introduce a
method that explicitly integrates this temporal aspect into
the training objective, allowing us to prune dynamic Gaus-
sian splats more effectively. To further optimize memory
usage in our scene representation, we also aim to compress
the storage size of the remaining Gaussians. To this end,
we developed a gradient-aware mixed-precision quantiza-
tion method that adjusts the bit precision of each Gaussian
parameter based on its sensitivity. We use gradient mag-
nitudes to determine parameters with high sensitivity, and
allocate them a higher precision, while those with lower im-
pact on the scene are quantized with fewer bits. Therefore,
our method achieves a good balance between compression
and reconstruction accuracy. Finally, to further enhance
the efficiency of our dynamic representation, we introduce
a keypoint extraction algorithm as a post-processing step.
This algorithm simplifies the temporal trajectories of the
Gaussian parameters, preserving only the key data points
that are crucial for accurate dynamic scene representation.
This greatly reduces the amount of temporal data stored, al-
lowing for more compact scene representations, as demon-

strated in our experiments where we achieve a compression
rate of up to 67× while preserving rendering quality.

Our experiments on benchmark datasets demonstrate the
benefits of our method across diverse scenarios. Further-
more, we perform an ablation study to demonstrate the con-
tribution of each key component in our pipeline. In a nut-
shell, our major contributions are as follows:

• We introduce the first method to prune dynamic Gaus-
sian splats, going beyond previous pruning techniques,
designed for static scenes, by incorporating temporal rel-
evance into the pruning process.

• We develop a sensitivity-driven, gradient-based quantiza-
tion method that dynamically assigns bit precision to pa-
rameters based on their impact on reconstruction accu-
racy, optimizing memory usage.

• We propose a keypoint extraction post-processing algo-
rithm to further reduce storage requirements by simpli-
fying the Gaussian parameter trajectories, retaining only
essential data points for compact scene representations.

2. Related Work

Dynamic 3D reconstruction. Recent advancements in
3D reconstruction based on Neural Radiance Fields
(NeRFs) [28] and 3D Gaussian Splatting (3DGS) [20] have
achieved remarkable levels of visual fidelity and accuracy.
These methods have subsequently been extended to 4D rep-
resentations [13, 24, 33], enabling dynamic scene recon-
struction. Methods to decompose a 4D scene into multiple
2D planes to learn a more compact representation are also
explored by various methods [1, 3, 16, 35]. In the case of
3DGS, where Gaussians are explicitly stored and rendered,
different approaches have emerged to model their time de-
pendence. One prominent line of work [6, 26, 39, 40] in
this area optimizes a canonical set of Gaussians from the
initial frame, and combines it with a deformation motion
field allowing temporal variations of the Gaussian parame-
ters. However, these methods are limited to short videos, as
they cannot add Gaussians after the initial frame.

Another class of methods [8, 9, 19, 41] directly mod-
els temporal Gaussians that can be present in a subset of
frames, enabling certain elements to appear in selected time
ranges and thus increasing the expressivity of their recon-
struction. However, a major limitation across these methods
is that both training and inference times for novel view syn-
thesis scale with the number of Gaussians, the length of the
sequence, and the complexity of their parameters, present-
ing a key bottleneck in enhancing reconstruction quality.

Compressed 3D radiance fields. An important research
direction has thus emerged in developing more compact
representations of radiance fields. For NeRFs, compact grid

2

Ground Truth Dynamic 3DGS [26] TC3DGS (Ours) STG [23] 4D Gaussian [38]

Figure 2. Comparative Evaluation on Panoptic Dataset [18] Recent lightweight state-of-the-art methods (STG [23], and 4D-
Gaussian [38]) struggle to accurately reconstruct scenes in complex environments. In contrast, our compression strategy effectively captures
and maintains high fidelity in dynamic scene details.

structures [4, 14, 15, 30] have already proven effective in re-
ducing network sizes and enhancing accuracy.

With 3DGS, recent works have either concentrated on
optimizing the representation of the Gaussian parameters
[11], or on identifying low-importance Gaussians and prun-
ing them entirely [11, 21, 42]. Unorthodox techniques like
representing the Gaussian parameters as 2D grids and ap-
plying image compression techniques [29, 31] have also
been studied. Better initialization and weighted sampling
based pruning [12] has also shown promising results. Addi-
tionally, the use of traditional compression techniques such
as vector quantization [21, 31] or entropy models [5] have
shown some potential for the compression of static scenes,
but scaling them to dynamic scenes with possibly hundreds
or thousands of frames remains a challenge.

Indeed, dynamic scenes require an even larger set of pa-
rameters to accurately capture motion, temporal variations,
and complex interactions within the scene.

The temporal relevance of each Gaussian changes dy-
namically, and traditional pruning strategies designed for
static scenes are insufficient, as they lack adaptability to
these fluctuations. To the best of our knowledge, we are the
first to propose a compression framework specifically de-
signed for dynamic 3D Gaussians. Our approach combines
temporal relevance-based pruning, gradient-based mixed-
precision quantization, and trajectory simplification to ad-
dress the unique requirements of dynamic scenes.

3. Method

In this section, we will first briefly discuss the Dynamic
3DGS [26] method in Sec. 3.1, which serves as the founda-
tion of our proposed approach. We then detail in Sec. 3.2.1
our novel masking and pruning strategies designed to elimi-
nate redundant Gaussians. Next, we present a sensitivity-
based mixed precision technique for efficient parameter
compression in Sec. 3.2.2, followed by a post-training com-
pression strategy aimed at minimizing storage overhead in
Sec. 3.2.3.

3.1. Dynamic 3D Gaussians
Dynamic 3DGS [26] models dynamic scenes by allowing
the Gaussians to move and rotate over time while enforc-
ing that they have persistent color, opacity, and scale. This
approach reconstructs a dynamic 3D scene over time us-
ing a series of images taken from multiple cameras across
different time steps, along with the cameras’ intrinsic and
extrinsic parameters. The method sequentially reconstructs
a dynamic 3D scene by initializing each time step from the
previous one and performing test-time optimization without
additional training data. This is unlike most other concur-
rent methods, which attempt to optimize all frames jointly.
This conceptual difference allows Dynamic 3DGS [26] to
enforce consistency in the reconstructed Gaussians across
frames. Additionally, this method enables tracking objects
throughout the dynamic scene, as each 3D Gaussian has a
unique correspondence across frames.

Each dynamic scene S is parameterized by a set of Dy-
namic 3D Gaussians, with certain parameters fixed for the
entire sequence and others varying over time. Specifically,
each Gaussian retains a fixed 3D scale (sx, sy, sz), color
(r, g, b), opacity logit o, and background logit bg as de-
termined in the initial frame. In contrast, parameters such
as the 3D center (xt, yt, zt) and 3D rotation, expressed as
a quaternion (qw,t, qx,t, qy,t, qz,t), evolve over time. This
formulation enables the Gaussians to represent consistent
scene elements across frames while dynamically adjusting
their positions and orientations.

During training, this 3D scene representation is itera-
tively updated using a differentiable renderer to minimize
the photometric error between the rendered and input im-
ages. Specifically, each Gaussian influences a point p in
physical 3D space according to the standard (unnormalized)
Gaussian equation weighted by its opacity, i.e.,

fi,t(p) = σ(oi) exp

(
−1

2
(p− µi,t)

TΣ−1
i,t (p− µi,t)

)
,

where µi,t =
[
xi,t yi,t zi,t

]T
is the center of

3

Learned Parameter-Aware
Bit-Precision

Quantization

Loss Function

Renderer

∇𝐿

Pruned and
Quantized Gaussians

(slightly distorted)

Ground Truth Prediction

Masked Gaussians3D Gaussians

Time Frame
Im

po
rt

an
ce

Temporally Consistent
Masking

`

Figure 3. Overview of our Temporally Compressed 3D Gaussian Splatting for Dynamic Scenese (TC3DGS) method. Our approach
involves a temporally consistent masking strategy to select relevant 3D Gaussians across frames. The masked Gaussians are then pruned
and quantized using a gradient-based, parameter-aware bit-precision quantization scheme, which optimizes memory usage while preserving
scene fidelity.

Gaussian i at timestep t, and Σi,t = Ri,tSiS
T
i R

T
i,t

is the covariance matrix of Gaussian i at timestep
t, obtained by combining the scaling matrix Si =
diag

([
sx,i sy,i sz,i

])
, and the rotation component

Ri,t = q2R
([
qwi,t

qxi,t
qyi,t

qzi,t
])

, where q2R()
constructs a rotation matrix from a quaternion. Finally, σ
is the standard sigmoid function.

3.2. TC3DGS
Dynamic 3DGS [26] is particularly promising because it
models the dynamic scene as movements of Gaussians un-
der kinematic constraints w.r.t. the previous timestep. By
optimizing the position and rotation of the Gaussians in-
stead of learning deformation functions, it removes the lim-
itation on possible deformations due to the characteristics of
the modeling function. However, by learning position and
rotation at each timestep separately, the number of param-
eters increases linearly, resulting in large storage sizes, and
thus limiting its applicability to high-fidelity and long-range
scene modeling.

3.2.1. Gaussian Masking and Pruning
Pruning techniques aimed at identifying and removing low-
importance Gaussians have been successfully applied to
static 3D Gaussian splatting [11, 17, 21, 32]. However, for
dynamic scenes, a temporally consistent importance mea-
sure is required to ensure that the pruned Gaussians remain
insignificant throughout the scene’s duration.

Various approaches to computing the importance of each
Gaussian in static scenes using training images and cam-
era positions have bee proposed [11, 32]. These methods
focus on the contribution of each Gaussian to the training
views. In dynamic scenes, Gaussians are not stationary, so

their contributions vary over time. To prune Gaussians ef-
fectively from dynamic scenes, it is essential to maintain
the contributions of high-importance Gaussians consistently
high, while suppressing low-importance ones, thus enabling
more effective pruning.

Compact-3DGS [21] introduces a masking approach
based on Gaussian volume and transparency. Gaussians
with low opacity, minimal volume, or both are masked out
since they have negligible impact on the rendered images.
A mask parameter m ∈ RN is learned to produce binary
masks M ∈ {0, 1}N using a straight-through estimator.
This binary mask is then applied to the Gaussians by scaling
their opacities and sizes. This is expressed as

Mn = sg(1[σ(mn) > ϵ]− σ(mn)) + σ(mn), (1)
ŝn = Mnsn, ôn = Mnon, (2)

where n represents the Gaussian index, ϵ denotes the mask-
ing threshold, sg(·) is the stop-gradient operator, and 1[·]
and σ(·) correspond to the indicator and sigmoid functions,
respectively.

Compact-3DGS [21] explains that this mask learns to
remove Gaussians with low opacity and/or small volume.
However, as shown in Figure 4, this explanation does not
hold in dynamic scenes. The value of mn can change sig-
nificantly across time frames, even with fixed opacity o and
scale s after the initial time frame.

In dynamic scenes, mn depends on the 2D projected area
of the Gaussians in the training views and their transmit-
tance, where transmittance Ti for the ith Gaussian along
a camera ray is defined as the Gaussian’s contribution to

4

Figure 4. Mask Consistency. (Left) Mask values of Gaussians
trained independently for each time frame. (Right) Mask values
trained with our loss.

blending, i.e.,

Ti = σ(oi)

i−1∏
j=1

(1− σ(oj)). (3)

As a Gaussian moves relative to the others, changes in
Ti are reflected in mn. Similarly, when a Gaussian moves
toward or away from the training cameras, its projected area
in the views changes, affecting mn accordingly.

Since the values in m strictly need to be high due to
their role in rendering through Eq. (1) and the photomet-
ric loss, we introduce an additional regularization to incen-
tivize lower values. We thus regularize m by minimizing

Lmask =

N∑
n=1

σ(mn). (4)

This regularization loss penalizes unnecessarily high val-
ues, reducing m to the minimum required to produce sat-
isfying renderings. The flexibility of this learned mask is
one of its key advantages, as it can be optimized to exhibit
desired properties via the use of additional constraints.

A key motivation for ensuring consistency of mn,t across
frames is to capture the global importance of the Gaussians
during pruning. To achieve this, we learn mn,t for each
timestamp and introduce a consistency loss function that
encourages mn,t to remain close to mn,t−1. Specifically,
we define this mask consistency loss function as

Lmc =

N∑
n=1

|mn,t − sg(mn,t−1)|. (5)

It ensures that the masks exhibit stability across the frames,
as shown in Figure 4 (Right). By maintaining consistency,
our approach prevents sudden fluctuations in Gaussian im-
portance, which can degrade rendering quality and lead to
suboptimal pruning results.

After optimizing across all timestamps, we perform
Gaussian pruning based on the average value of mn. Specif-
ically, a Gaussian is pruned if its average value across all

timestamps satisfies

1

T

T∑
t=1

σ(mn,t) < ϵ. (6)

3.2.2. Gradient-Aware Mix-Precision Quantization
The influence of the Gaussian parameters on reconstruction
quality is highly variable; a small adjustment in one parame-
ter can significantly alter the rendered image, whereas simi-
lar adjustments in other parameters or in the same parameter
of a different Gaussian may have minimal impact. Our ap-
proach uses gradient-based sensitivities to dynamically as-
sign bit precision to each parameter, based on its influence
on reconstruction accuracy. By leveraging this adaptive, in-
optimization quantization, each parameter adjusts its quan-
tization scale [10] in real-time, preserving detail in the re-
constructed scene.

We first calculate the mean sensitivity for each parameter
based on the gradients [32, 43], reflecting each parameter’s
impact on the image reconstruction performance. We in-
troduce a sensitivity coefficient S(θ), which represents the
responsiveness of image quality Q to changes in a Gaussian
parameter θ. This coefficient is formulated as

S(θ) =
1∑K

k=1 Nk

K∑
k=1

∣∣∂Qk

∂θ

∣∣. (7)

where K is the total number of training images used for
reconstruction, Nk is the number of pixels in the kth image,
and Qm denotes the cumulative pixel intensity across the
RGB channels in image k, serving as a proxy for image
quality.

The coefficient S(θ) quantifies how sensitive Q is to
variations in θ, measured by the gradient ∂Q

∂θ . A higher
gradient indicates that small adjustments in θ yield large
changes in image quality, suggesting a greater impact of θ
on the reconstruction.

By using this impact-based metric, we can effectively
rank the parameters by their importance on image fidelity.
We then normalize each sensitivity coefficient by scaling it
based on the minimum and maximum co-efficient across all
parameters. This standardization ensures that all the coeffi-
cients fall within a consistent range.

Using the normalized sensitivity γ ∈ [0, 1], we as-
sign a dynamic bit precision b within a range of bits b ∈
[bmin, bmax], where b ∈ Z is calculated as

b = ⌊γ · (bmax − bmin)⌋+ bmin. (8)

This approach allocates higher bit precision to more sen-
sitive parameters and lower bit precision to less sensitive
ones, optimizing the balance between computational effi-
ciency and model accuracy.

5

0 20 40 60 80 100 120 140

Timeframe

1.0

0.5

0.0

0.5

1.0

1.5
C

oo
rd

in
at

e
Va

lu
e

x
(Uniform) 7 points
(Optimized) 5 points
Uniform Points

Optimized Points
y
(Uniform) 7 points
(Optimized) 4 points

z
(Uniform) 7 points
(Optimized) 6 points

Figure 5. Keypoint Interpolation. In this example, we represent
a position across 150 frames with only 5, 4 and 6 keypoints for
x, y and z, respectively, with only 0.038 MSE. By comparison,
uniformly sampling 7 keypoints increases storage and increases
error to 0.089 MSE.

After running our scene reconstruction process for a
specified number of iterations, we apply mixed-precision
quantization to all Gaussian parameters, excluding the po-
sition parameter, to achieve low-bit precision for the other
parameters. Instead of relying on traditional vector quan-
tization (VQ) or basic min-max quantization, we propose
a parameter quantization technique with learnable scaling
factors [10], integrating it directly into the optimization
process rather than treating it as a post-optimization fine-
tuning step. Consequently, many parameters can be effec-
tively quantized to even 4-bit precision, reducing memory
and computational load without compromising reconstruc-
tion quality.

Training. We train the Gaussian parameters to model
the scene one time frame at a time. Following [26], we
use physically-based priors to regularize the Gaussians. The
optimization objective is defined as

L = Loriginal + λmaskLmask + λmcLmc, (9)

where Loriginal is the same loss function as in [26], while
Lmask and Lmc are defined in Eq. 4 and 5, respectively.

3.2.3. Keypoint Interpolation
Previous implementations of dynamic 3DGS often model
the time-dependence of parameters by fitting polynomials
to the Gaussian parameters, which greatly limits the range
of motions that can accurately be modeled. By contrast,
Dynamic 3DGS [26] opts for inefficiently storing all time-
dependent parameters, such as Gaussian means, rotations,
and colors, for all time frames. While this greatly increases
the expressivity of this method compared to other works, it
comes at a significant cost in memory.

We take a different approach and observe that only a
small subset of keypoints are required to accurately recon-
struct complex motions. However, the placement of these

Algorithm 1 Keypoint Selection
Input: values, max keypoints (maxkp), tolerance (τ)

1: Initialize keypoints at first and last positions
2: for i = 1 to maxkp − 2 do
3: Compute interpolated values based on keypoints
4: Compute error for every value
5: Compute error (mse) for entire sequence
6: if mse ≤ τ or |keypoints| ≥ maxkp then
7: break
8: end if
9: Select the value with the highest error and add it to

keypoints
10: end for

keypoints across time cannot be predetermined, as it de-
pends on the individual Gaussians. For instance, back-
ground Gaussians require a single keypoint to cover the
whole sequence, whereas moving objects will need substan-
tially more keypoints. This motivates the development of
our keypoint selection strategy, which we adapt from the
Ramer–Douglas–Peucker (RDP) algorithm [7]. It is applied
as a post-processing step to further reduce storage require-
ments for the Gaussian parameters that change over time in
dynamic scenes.

While the RDP algorithm selects keypoints from a se-
quence based on a local error tolerance, ξ, we propose a
novel keypoint selection method, as outlined in Algorithm 1
. This method offers several advantages over the RDP algo-
rithm. It provides greater flexibility by allowing control via
both an acceptable tolerance value, τ , and a maximum num-
ber of keypoints. The parameter τ defines the maximum
allowable Mean Squared Error (MSE) over the sequence.
Unlike RDP, which is solely controlled by ξ, our method en-
ables a hard maximum bound on the number of keypoints,
allowing for more precise, fine-grained control.

Following this, we flatten and transpose the time-
dependent parameters from RT×N×D to RND×T , trans-
forming the data into ND sequences of length T . We then
compute the keypoints for all Gaussians in parallel, forming
sparse matrices. The sparsity of these matrices is controlled
using the parameters maxkp and τ , and and we store these
sparse matrices to minimize memory usage. Upon load-
ing the scene data, we interpolate the keypoints across all
timesteps to reconstruct the dense matrices, which are then
reshaped to their original parameter dimensions.

4. Experiments

We compare our method with multiple techniques extend-
ing the 3D Gaussians approach to dynamic scenes. We
evaluate the methods on diverse datasets covering different
real-world and synthetic scenarios. Results on additional

6

Table 1. Quantitative results on the Panoptic dataset. The best
result is shown in bold, while the second-best result is underlined.
The rendering resolution is set to 640×460.

Model PSNR (dB)↑ SSIM↑ LPIPS↓ FPS ↑ Storage (MB)↓

Dynamic 3DGS [26] 28.7 0.91 0.17 760 1994

STG [23] 20.5 0.78 0.44 429 19
4D Gaussian [38] 27.2 0.91 0.18 40 62

TC3DGS (Ours) 28.3 0.91 0.17 890 49

datasets are provided in the supplementary material along
with more visualizations.

4.1. Datasets
4.1.1. Panoptic Sports Dataset
We evaluate our method on the Panoptic Sports dataset, a
subset from the Panoptic Studio dataset [18]. This dataset
contains 6 different scenes, each having 31 camera se-
quences spanning 150 frames. We use 4 cameras (0, 10, 15
and 30) for testing and the rest for training, following the
convention set by [26]. In addition to the images, we use
the provided foreground/background segmentation to apply
a segmentation loss to improve the results and prevent the
background from moving. This dataset contains complex
motions with objects moving quickly and over long dis-
tances.

4.1.2. Neural 3D Video Dataset
The Neural 3D Video dataset [22] consists of 6 scenes with
a number of cameras ranging from 18 to 21 and sequences
of 300 frames. The images in this dataset are or resolution
2704×2028, but we downsample them to 1352×1014 for
fair comparison with other methods. We hold out camera 0
for testing and do not apply any background loss, as back-
ground segmentations are not available for this dataset.

4.2. Implementation Details
For our experiments, we closely follow the hyperparameters
outlined in Dynamic 3DGS [26]. Specifically, for the com-
pression strategy, we set both the mask weight parameter
λmask and the masking consistency loss parameter λmask-cons
to 0.01 in our primary experiments. In terms of quantiza-
tion, we use Gaussian parameters with bin sizes of bmin = 4
and bmax = 8, while positional data is quantized to 16-
bit precision to ensure spatial accuracy. For the learnable
quantization step size, we use a 0.02 learning rate. Quan-
tization is applied after 6000 iterations in the first scene
for all experiments. For keypoint interpolation, we set the
tolerance to τ = 1 × 10−5 for the Panoptic dataset and
τ = 1 × 10−7 otherwise. Moreover, we restrict the maxi-
mum number of keypoints to maxkp = 30 for the Panoptic
dataset and maxkp = 60 otherwise, which provides an effec-
tive balance between compression and temporal trajectory

Table 2. Quantitative comparisons with various competitive
baselines on the Neural 3D Video dataset. ∗ represent methods
trained with a 50-frame video sequence, requiring six models to
complete the evaluation.“Storage” refers to the total model size
for 300 frames.

Method PSNR↑ FPS↑ Storage↓

4DGS [41] 31.57 96.69 3128.00MB
4D Gaussian [38] 31.15 30.00 90MB
C-D3DGS [19] 30.46 118.00 338.00MB
Deformable 3DGS [40] 30.98 29.62 32.64MB
E-D3DGS [2] 31.20 69.70 40.20MB
STG∗ [23] 32.04 273.47 175.35MB
Dynamic 3DGS [26] 30.97 460.00 2772.00MB

TC3DGS (Ours) 30.58 596.32 51.34MB

(a) Ground-Truth (b) TC3DGS Render

Figure 6. Qualitative Evaluation on the Neural 3D Video
dataset. This figure shows a comparison between the ground truth
and our reconstruction, demonstrating that our method achieves
near-identical results (PSNR: 32.7) despite extreme compression.

accuracy. Additional ablation studies with varying values
of certain hyperparameters are provided in the supplemen-
tary material.

4.3. Results
As shown in Table 1, our method achieves results compara-
ble to Dynamic 3DGS [26], while utilizing, on average, 40
times less storage. Similarly, Table 2 presents the results of
our method on the DyNeRF dataset, demonstrating compet-
itive performance with a significantly smaller storage foot-
print. Furthermore, our approach delivers the fastest render-
ing speed.

On the Panoptic dataset, we failed to obtain reason-
able results for the STG baseline [23], while 4D Gaus-
sian [38] produce very distorted images, as shown in Fig-
ure 2. This dataset demonstrates the strengths of explicit
methods such as Dynamic 3DGS [26] and ours. While Dy-
namic 3DGS [26] is able to model the complex motion and
perform well on the Panoptic dataset, it is highly memory
inefficient. In comparison, our model performs equally well
while using much less storage.

4.4. Ablation Studies
We conduct an ablation study to evaluate the effectiveness
of the individual components of our method. We report the
results of this ablation in Table 3 on two scenes from the
Panoptic dataset [18] and the Neural 3D Video dataset [22].

7

Table 3. Ablation study on the proposed contributions. ‘M’, ‘Q’ and ‘I’ denote masking, quantization, interpolation, respectively.
‘#Gauss’ means the number of Gaussians.

Method \Dataset Basketball Cook Spinach

M Q I PSNR #Gauss Storage FPS PSNR #Gauss Storage FPS

Dynamic 3DGS 28.2 349K 2161 MB 582 33.1 294K 3370 MB 472
✓ 28.1 189K 1087 MB 750 32.9 59 K 674 MB 583
✓ ✓ 27.9 189K 299 MB 750 32.8 59 K 194 MB 583
✓ ✓ ✓ 27.9 189K 46 MB 750 32.7 59 K 53 MB 583

Dynamic 3DGS [26] Pruned Quantized + Pruned Quantized + Pruned + KPI

Figure 7. Ablation study. Adding the different components of our method comes at virtually no cost in visual accuracy but at significantly
decreased storage and rendering cost.

These results show the importance of each component of
our method in reducing the storage size of the 3DGS [26].
In these experiments, our pruning strategy divides the num-
ber of Gaussians by 2 and by 5 folds for each scene. Then,
sensitivity-aware quantization reduces the necessary stor-
age space by 5, and keypoint interpolation by an additional
4 to 5 fold. Altogether, TC3DGS yields a compression ratio
of 49 and 64, respectively. Most notably, this drastic size
reduction comes at little to no cost in novel view synthesis,
with an insignificant drop in PSNR of at most 0.4, which is
barely perceptible.

5. Limitations

Our approach has certain limitations rooted in the nature of
dynamic 3D Gaussian splatting (3DGS) and the constraints
of compressing temporal data for dynamic scenes. First, un-
like compression approaches for static 3DGS, we are lim-
ited in our ability to aggressively compress position param-
eters, as doing so would compromise temporal consistency
and spatial accuracy in the dynamic setting. Additionally, as
our method builds on Dynamic 3DGS, it inherits its inabil-
ity to accurately reconstruct new objects that enter the scene

after the initial frame. This restricts its use in scenarios re-
quiring complete adaptability to scene changes. Nonethe-
less, our method excels at handling scenes with complex
and fast motions, maintaining high fidelity and rendering
efficiency despite these constraints.

6. Conclusion

We introduced Temporally Compressed 3D Gaussian Splat-
ting (TC3DGS), a novel framework designed to achieve
memory-efficient and high-speed reconstruction of dynamic
scenes. Our method achieves up to 67x compression and up
to three times faster rendering while retaining high fidelity
in complex motion scenarios. Through selective temporal
pruning and gradient-based quantization, TC3DGS mini-
mizes memory usage with minimal impact on visual qual-
ity. While our method is effective, limitations remain in
aggressively compressing position data and handling new
objects that enter the scene mid-sequence. Future work will
focus on bridging the gap between spatio-temporal methods
and storage-efficient dynamic scene reconstruction, aiming
to extend adaptability and further reduce storage require-
ments for complex, evolving environments.

8

Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes

Supplementary Material

7. Technicolor Dataset [34]
To further demonstrate the effectiveness of our method, we
evaluate our method on the Technicolor Dataset. The re-
sults in Table 4 show that our method provides competitive
performance with a significantly smaller storage footprint.
Figure 11 shows a comparison between the ground truth and
our reconstruction, demonstrating that our method achieves
near identical results.

Table 4. Per-Scene Results on the Technicolor Dataset. Our
method achieves performance comparable to Dynamic3DGS [26]
while significantly reducing the model size.

Method Avg. Birthday Fabien Painter Theater Train

PSNR↑
STG [23] 33.60 32.09 35.70 36.44 30.99 32.58
D. 3DGS [26] 32.12 30.82 33.62 34.73 31.12 30.67

Ours 31.9 30.33 33.15 34.62 31.01 30.57

SSIM↑
STG [23] - - - - - -
D. 3DGS [26] 0.88 0.90 0.88 0.87 0.86 0.88

Ours 0.85 0.88 0.86 0.81 0.84 0.86

LPIPS↓
STG [23] 0.08 0.04 0.11 0.10 0.13 0.04
D. 3DGS [26] 0.13 0.07 0.16 0.16 0.14 0.11

Ours 0.14 0.09 0.15 0.17 0.16 0.13

8. Detailed Results for Panoptic and Neural 3D
Video Dataset

We present detailed results for the two datasets discussed in
Sec. 4.1 of our paper, summarized in Table 5 and 8. These
results include various metrics evaluated for each scene in
both datasets, offering a granular view of performance. Ad-
ditionally, we provide supplementary visualizations for the
Neural 3D Video dataset, which further demonstrate the ef-
fectiveness of our method in capturing dynamic scenes with
high fidelity. Finally, we present an ablation study over the
main elements of our method in Figure 8.

9. Additional Experiments
We conducted several experiments to better understand hy-
perparameters of our method.

9.1. Masking and Mask Consistency
We vary the weight of the mask loss λmask and the mask-
ing consistency loss λmask-cons on the first 50 frames of the

Table 5. Per-scene quantitative comparisons on the Panoptic
Sports Dataset [18].

Method Avg. Basket. Juggle Boxes Softball Tennis Football

PSNR↑
4DGaussians [38] 27.2 26.68 27.47 27.02 27.44 27.31 27.39
STG [23] 20.45 21.60 19.93 20.65 19.44 20.82 20.23
D. 3DGS [26] 28.70 28.22 29.48 29.46 28.43 28.11 28.49

Ours 27.81 27.92 29.15 28.28 27.96 25.97 28.00

SSIM↑
4DGaussians [38] 0.91 0.90 0.92 0.91 0.92 0.92 0.92
STG [23] 0.79 0.78 0.78 0.79 0.79 0.78 0.78
D. 3DGS [26] 0.91 0.91 0.92 0.91 0.91 0.91 0.91

Ours 0.89 0.89 0.90 0.89 0.89 0.89 0.89

LPIPS↓
4DGaussians [38] 0.11 0.14 0.10 0.10 0.10 0.11 0.10
STG [23] 0.10 0.14 0.10 0.10 0.10 0.11 0.10
D. 3DGS [26] 0.17 0.18 0.15 0.17 0.19 0.18 0.17

Ours 0.20 0.20 0.19 0.19 0.20 0.20 0.20

SIZE(MB)↓
4DGaussians [38] 63 66 59 63 57 72 65
STG [23] 19 19 19 20 19 22 19
D. 3DGS [26] 2008 2161 1935 2021 2021 1915 2000

Ours 49 46 32 44 41 48 34

Basketball scene from the Panoptic Sports dataset. The re-
sults, shown in Table 6, indicate that increasing the weight
of these parameters leads to greater pruning of Gaussians
but results in reduced image quality. We found λmask =
λmask-cons = 0.01 to be an effective balance between main-
taining image quality and minimizing model size.

9.2. Quantization
We ran experiments with sensitivity-aware quantization
with different bit-ranges by varying bmin and bmax as well as
using uniform bitwidth for all paramaters. We shown in the
Table 7 that using adaptive bitwidth, the average bitwidth is
lower than uniform quantization at 8 bits while image qual-
ity is similar. Whereas, compared to uniform quantization
using lower bitwidth, our average bitwidth is slightly higher
while image quality is improved considerably.

9.3. Keypoint Interpolation
We experimented with varying the hyperparameters for
keypoint interpolation, specifically the maximum number
of keypoints, maxkp. As shown in Figure 9, increas-
ing maxkp reduces compression error and improves image
quality. Conversely, increasing τ allows for greater error
tolerance, leading to a decrease in image quality.

The experiments summarized in Figure 9 were con-
ducted on 150 frames of the Basketball scene with mask-
ing parameters set to λmask = λmask-cons = 0.01 and fixed

1

(a) SSIM ↑

Mask Consistency Loss

Mask Loss 0 0.01 0.05 0.1

0.005 0.9087 0.9105 0.9109 0.9068
0.01 0.9126 0.9140 0.9113 0.9092
0.05 0.9036 0.9006 0.8986 0.8970
0.1 0.8938 0.8956 0.8949 0.8972

(b) PSNR ↑

Mask Consistency Loss

Mask Loss 0 0.01 0.05 0.1

0.005 28.0 27.8 28.2 26.8
0.01 28.1 28.3 26.8 26.9
0.05 27.2 26.6 26.0 26.0
0.1 27.1 27.4 26.6 26.7

(c) LPIPS ↓

Mask Consistency Loss

Mask Loss 0 0.01 0.05 0.1

0.005 0.1797 0.1769 0.1781 0.1815
0.01 0.1746 0.1761 0.1748 0.1829
0.05 0.2046 0.2090 0.2139 0.2172
0.1 0.2345 0.2294 0.2344 0.2335

(d) Number of Gaussians ↓

Mask Consistency Loss

Mask Loss 0 0.01 0.05 0.1

0.005 208403 155720 143112 140897
0.01 153757 112909 98017 93568
0.05 49770 47110 29629 26154
0.1 28972 31067 19472 15656

Table 6. Impact of Mask Loss and Mask Consistency Loss. Increasing the weight of these masks leads to more aggressive pruning of
Gaussians, but at the cost of rendering quality. Setting λmask = 0.01 and λmask−cons = 0.01 provides a good trade-off between quality
and storage efficiency.

Bit-precision PSNR SSIM LPIPS Compression

uniform 4 bit 25.1 0.81 0.32 8x
uniform 5 bit 25.8 0.84 0.28 6.4x
uniform 6 bit 26.1 0.86 0.26 5.3x
uniform 8 bit 28.1 0.90 0.20 4x
Ours [5,8] 28.0 0.90 0.20 5.6x
Ours [4,8] 27.9 0.90 0.20 6.3x
Ours [3,8] 26.2 0.84 0.28 7.3x

Table 7. Comparison of Sensitivity-Aware and Uniform
Bit Quantization. Our sensitivity-aware [4,8]-bit quantization
achieves PSNR comparable to 8-bit precision while providing
compression similar to uniform 5-bit quantization.

tau = 1 × e−6. We observed that overly relaxing τ leads
to underfitted keypoints, resulting in compromised render-
ing quality. On the other hand, increasing maxkp beyond a
certain threshold results in diminishing returns, where inter-
polation error continues to decrease, but the improvement in
image quality becomes marginal.

Additionally, Figure 10 illustrates that only the color pa-
rameters saturate the maximum keypoints, whereas posi-
tions and rotations can be adequately approximated with
fewer keypoints.

We selected the hyperparameters to strike a balance be-
tween rendering quality and storage efficiency. For the
Panoptic Sports dataset, we used maxkp = 30 and τ =
1× 10−5. For the Neural 3D Video dataset, which consists
of 300-frame sequences, we increased maxkp to 60 to ac-

commodate the longer sequence length. In the case of the
Technicolor dataset, despite its long sequences, we matched
the experimental setup by using 50 timesteps per scene and
reduced maxkp to 15.

2

Dynamic 3DGS [26] Pruned Quantized + Pruned Quantized + Pruned + KPI

Figure 8. Ablation Study on Panoptic Sports Dataset

Table 8. Per-scene quantitative comparisons on the Neural 3D Video Dataset [22]. Some methods only report part of the scenes. 1 only
includes the Flame Salmon scene. 2 excludes the Coffee Martini scene. “-” denotes results that are unavailable in prior work.

Method Avg. Coffee Martini Cook Spinach Cut Roasted Beef Flame Salmon Flame Steak Sear Steak

PSNR↑
Neural Volumes [25] 1 22.80 - - - 22.80 - -
LLFF [27] 1 23.24 - - - 23.24 - -
DyNeRF [22] 1 29.58 - - - 29.58 - -
HexPlane [3] 2 31.71 - 32.04 32.55 29.47 32.08 32.39
NeRFPlayer [36] 30.69 31.53 30.56 29.35 31.65 31.93 29.13
HyperReel [1] 31.10 28.37 32.30 32.92 28.26 32.20 32.57
K-Planes [16] 31.63 29.99 32.60 31.82 30.44 32.38 32.52
MixVoxels-L [37] 31.34 29.63 32.25 32.40 29.81 31.83 32.10
MixVoxels-X [37] 31.73 30.39 32.31 32.63 30.60 32.10 32.33
4D Gaussians [38] 30.67 27.34 32.46 32.90 29.20 32.51 32.49
Dynamic 3DGS [26] 30.97 27.32 32.97 31.75 27.26 33.24 33.68
STG [23] 32.05 28.61 33.18 33.52 29.48 33.64 33.89

Ours 30.58 27.42 31.92 33.61 27.12 32.48 33.04

LPIPS↓
Neural Volumes [25] 1 0.295 - - - 0.295 - -
LLFF [27] 1 0.235 - - - 0.235 - -
DyNeRF [22] 1 0.083 - - - 0.083 - -
HexPlane [3] 2 0.075 - 0.082 0.080 0.078 0.066 0.070
NeRFPlayer [36] 0.111 0.085 0.113 0.144 0.098 0.088 0.138
HyperReel [1] 0.096 0.127 0.089 0.084 0.136 0.078 0.077
MixVoxels-L [37] 0.096 0.106 0.099 0.088 0.116 0.088 0.080
MixVoxels-X [37] 0.064 0.081 0.062 0.057 0.078 0.051 0.053
Dynamic 3DGS [26] 0.082 0.122 0.077 0.087 0.09 0.072 0.068
STG [23] 0.044 0.069 0.037 0.036 0.063 0.029 0.030

Ours 0.089 0.129 0.081 0.088 0.094 0.075 0.071

3

10 20 30 40 50 60
Number of Keypoints

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

In
te

rp
ol

at
io

n
Er

ro
r

Interpolation Error
PSNR

27.0

27.2

27.4

27.6

27.8

28.0

28.2

PS
NR

(a) Interpolation Error and PSNR vs Maximum Keypoints

10 20 30 40 50 60
Number of Keypoints

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

In
te

rp
ol

at
io

n
Er

ro
r

Interpolation Error
SSIM

0.875

0.880

0.885

0.890

0.895

SS
IM

(b) Interpolation Error and SSIM vs Maximum Keypoints

Figure 9. Impact of increasing Maximum Keypoints The figure
illustrates the trend of interpolation error and PSNR/SSIM as we
increase maxkp. It highlights that the rate of change in interpola-
tion error and PSNR/SSIM diminishes as we increase maxkp

Positions Colors Rotations
keypoints

0

5

10

15

20

25

30

M
ea

n
Ke

yp
oi

nt
s

(a) Mean number of Keypoints

Positions Colors Rotations
keypoints

5

10

15

20

25

30

Fr
eq

ue
nc

y

(b) Distribution of Keypoints

Figure 10. Distribution of Keypoints Across Different Parame-
ters. The figure illustrates the mean number of keypoints for Gaus-
sian parameters. It highlights that only color parameters reach
maxkp saturation, while positions and rotations can be effectively
estimated with fewer keypoints.

4

(a) Ground-Truth (b) TC3DGS Render

Figure 11. Qualitative Evaluation on the Technicolor dataset. This figure shows a comparison between the ground truth and our
reconstruction, demonstrating that our method achieves near-identical results despite extreme compression.

5

(a) Ground-Truth (b) TC3DGS Render

Figure 12. Qualitative Evaluation on the Neural 3D Video Dataset. This figure shows a comparison between the ground truth and our
reconstruction, demonstrating that our method achieves near-identical results despite extreme compression. Top: Cook Spinach, Bottom:
Sear Steak

6

References
[1] Benjamin Attal, Jia-Bin Huang, Christian Richardt,

Michael Zollhoefer, Johannes Kopf, Matthew
O’Toole, and Changil Kim. HyperReel: High-Fidelity
6-DoF Video with Ray-Conditioned Sampling. In
CVPR, 2023. 2, 3

[2] Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun
Lee, Gun Bang, and Youngjung Uh. Per-Gaussian
Embedding-Based Deformation for Deformable 3D
Gaussian Splatting. In ECCV, 2024. 7

[3] Ang Cao and Justin Johnson. HexPlane: A Fast Rep-
resentation for Dynamic Scenes. 2023. 2, 3

[4] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu,
and Hao Su. Tensorf: Tensorial radiance fields. In
ECCV, 2022. 3

[5] Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Ha-
randi, and Jianfei Cai. Hac: Hash-grid assisted con-
text for 3d gaussian splatting compression. In ECCV,
2025. 3

[6] Devikalyan Das, Christopher Wewer, Raza Yunus,
Eddy Ilg, and Jan Eric Lenssen. Neural parametric
gaussians for monocular non-rigid object reconstruc-
tion. In CVPR, 2024. 1, 2

[7] DAVID H DOUGLAS and THOMAS K PEUCKER.
ALGORITHMS FOR THE REDUCTION OF THE
NUMBER OF POINTS REQUIRED TO REPRE-
SENT A DIGITIZED LINE OR ITS CARICATURE.
Cartographica, 10(2):112–122, 1973. 6

[8] Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He,
Wenzheng Chen, and Baoquan Chen. 4d-rotor gaus-
sian splatting: towards efficient novel view synthesis
for dynamic scenes. In ACM SIGGRAPH, 2024. 1, 2

[9] Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He,
Wenzheng Chen, and Baoquan Chen. 4D-Rotor Gaus-
sian Splatting: Towards Efficient Novel View Synthe-
sis for Dynamic Scenes. In SIGGRAPH, 2024. 2

[10] Steven K. Esser, Jeffrey L. McKinstry, Deepika
Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. LEARNED STEP SIZE QUANTIZA-
TION. In ICLR, 2020. 5, 6

[11] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu,
Dejia Xu, and Zhangyang Wang. LightGaussian: Un-
bounded 3D Gaussian Compression with 15x Reduc-
tion and 200+ FPS. 2024. 2, 3, 4

[12] Guangchi Fang and Bing Wang. Mini-Splatting: Rep-
resenting Scenes with a Constrained Number of Gaus-
sians. In ECCV, 2024. 3

[13] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie,
Xiaopeng Zhang, Wenyu Liu, Matthias Nießner, and
Qi Tian. Fast Dynamic Radiance Fields with Time-
Aware Neural Voxels. In SIGGRAPH Asia, 2022. 2

[14] Linus Franke, Darius Rückert, Laura Fink, and Marc
Stamminger. TRIPS: Trilinear Point Splatting for
Real-Time Radiance Field Rendering. Computer
Graphics Forum, 2024. 3

[15] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qin-
hong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks.
In CVPR, 2022. 3

[16] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rah-
bæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-Planes: Explicit Radiance Fields
in Space, Time, and Appearance. In CVPR, 2023. 2, 3

[17] Sharath Girish, Kamal Gupta, and Abhinav Shrivas-
tava. EAGLES: Efficient Accelerated 3D Gaussians
with Lightweight EncodingS. In ECCV, 2024. 4

[18] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu,
Lei Tan, Lin Gui, Sean Banerjee, Timothy Godisart,
Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei
Nobuhara, and Yaser Sheikh. Panoptic Studio: A Mas-
sively Multiview System for Social Interaction Cap-
ture. TPAMI, 2019. 2, 3, 7, 1

[19] Kai Katsumata, Duc Minh Vo, and Hideki Nakayama.
A compact dynamic 3d gaussian representation for
real-time dynamic view synthesis. In ECCV, 2025.
2, 7

[20] Bernhard Kerbl, Georgios Kopanas, Thomas
Leimkühler, and George Drettakis. 3D Gaussian
Splatting for Real-Time Radiance Field Rendering.
ACM TOG, 2023. 1, 2

[21] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan
Ko, and Eunbyung Park. Compact 3d gaussian rep-
resentation for radiance field. In CVPR, 2024. 2, 3,
4

[22] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Si-
mon Green, Christoph Lassner, Changil Kim, Tan-
ner Schmidt, Steven Lovegrove, Michael Goesele,
Richard Newcombe, and Zhaoyang Lv. Neural 3D
Video Synthesis from Multi-view Video. arXiv
preprint arXiv:2103.02597, 2022. 7, 3

[23] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Space-
time gaussian feature splatting for real-time dynamic
view synthesis. In CVPR, 2024. 3, 7, 1

[24] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu
Tseng, Ayush Saraf, Changil Kim, Yung-Yu Chuang,
Johannes Kopf, and Jia-Bin Huang. Robust dynamic
radiance fields. In CVPR, 2023. 2

[25] Stephen Lombardi, Tomas Simon, Jason Saragih,
Gabriel Schwartz, Andreas Lehrmann, and Yaser
Sheikh. Neural Volumes: Learning Dynamic Ren-
derable Volumes from Images. ACM Transactions on
Graphics (TOG), 2019. 3

[26] Jonathon Luiten, Georgios Kopanas, Bastian Leibe,
and Deva Ramanan. Dynamic 3D Gaussians: Track-

7

ing by Persistent Dynamic View Synthesis. In 3DV,
2024. 1, 2, 3, 4, 6, 7, 8

[27] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-
Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi,
Ren Ng, and Abhishek Kar. Local Light Field Fusion:
Practical View Synthesis with Prescriptive Sampling
Guidelines. ACM Transactions on Graphics (TOG),
2019. 3

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 2021. 1,
2

[29] Wieland Morgenstern, Florian Barthel, Anna Hils-
mann, and Peter Eisert. Compact 3D Scene Represen-
tation via Self-Organizing Gaussian Grids. In ECCV,
2024. 3

[30] Thomas Müller, Alex Evans, Christoph Schied, and
Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM TOG,
2022. 3

[31] KL Navaneet, Kossar Pourahmadi Meibodi,
Soroush Abbasi Koohpayegani, and Hamed Pir-
siavash. CompGS: Smaller and faster gaussian
splatting with vector quantization. In ECCV, 2024. 3

[32] Simon Niedermayr, Josef Stumpfegger, and Rüdiger
Westermann. Compressed 3D Gaussian Splatting for
Accelerated Novel View Synthesis. In CVPR, 2024.
4, 5

[33] Albert Pumarola, Enric Corona, Gerard Pons-Moll,
and Francesc Moreno-Noguer. D-nerf: Neural radi-
ance fields for dynamic scenes. In CVPR, 2021. 2

[34] Neus Sabater, Guillaume Boisson, Benoit Vandame,
Paul Kerbiriou, Frederic Babon, Matthieu Hog, Tris-
tan Langlois, Remy Gendrot, Olivier Bureller, Arno
Schubert, and Valerie Allie. Dataset and Pipeline for
Multi-View Light-Field Video. In CVPR, 2017. 1

[35] Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning
Liu, Hongwen Zhang, and Yebin Liu. Tensor4D: Effi-
cient Neural 4D Decomposition for High-fidelity Dy-
namic Reconstruction and Rendering. In CVPR, 2023.
2

[36] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen,
Lele Chen, Junsong Yuan, Yi Xu, and Andreas Geiger.
Nerfplayer: A streamable dynamic scene representa-
tion with decomposed neural radiance fields. IEEE
Transactions on Visualization and Computer Graph-
ics, 2023. 3

[37] Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian,
Yafei Song, and Huaping Liu. Mixed Neural Voxels
for Fast Multi-view Video Synthesis. In ICCV, 2023.
3

[38] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xi-
aopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and
Xinggang Wang. 4D Gaussian Splatting for Real-
Time Dynamic Scene Rendering. In CVPR, 2024. 3,
7, 1

[39] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xi-
aopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and
Xinggang Wang. 4d gaussian splatting for real-time
dynamic scene rendering. In CVPR, 2024. 1, 2

[40] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao,
Yuqing Zhang, and Xiaogang Jin. Deformable 3d
gaussians for high-fidelity monocular dynamic scene
reconstruction. In CVPR, 2024. 1, 2, 7

[41] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang.
Real-time Photorealistic Dynamic Scene Representa-
tion and Rendering with 4D Gaussian Splatting. In
ICLR, 2024. 1, 2, 7

[42] Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li
Yang, Cheng Peng, Rama Chellappa, and Deliang Fan.
LP-3DGS: Learning to Prune 3D Gaussian Splatting.
arXiv preprint arXiv:2405.18784, 2024. 2, 3

[43] Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang,
Ekaterina Shutova, Shiji Zhou, and Shanghang Zhang.
Gradient-based Parameter Selection for Efficient Fine-
Tuning. In CVPR, 2024. 5

8

	Introduction
	Related Work
	Method
	Dynamic 3D Gaussians
	TC3DGS
	Gaussian Masking and Pruning
	Gradient-Aware Mix-Precision Quantization
	Keypoint Interpolation

	Experiments
	Datasets
	Panoptic Sports Dataset
	Neural 3D Video Dataset

	Implementation Details
	Results
	Ablation Studies

	Limitations
	Conclusion
	Technicolor Dataset technicolor
	Detailed Results for Panoptic and Neural 3D Video Dataset
	Additional Experiments
	Masking and Mask Consistency
	Quantization
	Keypoint Interpolation

